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ABSTRACT
Reverse Nearest Neighbor (RNN) queries are of particular
interest in a wide range of applications such as decision sup-
port systems, profile based marketing, data streaming, docu-
ment databases, and bioinformatics. The earlier approaches
to solve this problem mostly deal with two dimensional data.
However most of the above applications inherently involve
high dimensions and high dimensional RNN problem is still
unexplored. In this paper, we propose an approximate so-
lution to answer RNN queries in high dimensions. Our ap-
proach is based on the strong correlation in practice between
k-NN and RNN. It works in two phases. In the first phase
the k-NN of a query point is found and in the next phase
they are further analyzed using a novel type of query Boolean
Range Query (BRQ). Experimental results show that BRQ
is much more efficient than both NN and range queries,
and can be effectively used to answer RNN queries. Per-
formance is further improved by running multiple BRQ si-
multaneously. The proposed approach can also be used to
answer other variants of RNN queries such as RNN of order
k, bichromatic RNN, and Matching Query which has many
applications of its own. Our technique can efficiently an-
swer NN, RNN, and its variants with approximately same
number of I/O as running a NN query.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Theory, Algorithm, Experimentation, Performance

Keywords
Nearest Neighbor, Reverse Nearest Neighbor, Boolean Range
Query
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1. INTRODUCTION
The goal of the Reverse Nearest Neighbor (RNN) prob-

lem is to find all points in a given data set whose nearest
neighbor is a given query point. There are a wide range
of applications that can benefit from an efficient implemen-
tation of RNN queries, such as decision support systems,
continuous referral systems, profile-based marketing, main-
taining document repositories, bioinformatics, etc.

A large number of applications for RNN queries is given
in [12]. For example, a two-dimensional RNN query may
ask the set of customers affected by the opening of a new
store outlet location in order to inform the relevant cus-
tomers. This query can also help to identify a good location
which maximizes the number of potential customers. A high
dimensional RNN query may ask the subset of subscribers
to a digital library who will find a newly added document
most relevant. Each subscriber is described by a high di-
mensional feature vector consisting of her/his interests and
background, and each document is similarly described by a
corresponding feature vector describing its content. Devel-
opment of feature vectors and similarity metrics for docu-
ment databases have been extensively studied in the infor-
mation retrieval community. Similar to the digital library
example, high dimensional RNN queries can be employed in
profile-based marketing, where a company can start a new
service based on the profiles of its customers interests. An
RNN query can be posed to identify the customers who will
find a new service the most suitable to them. The query will
be based on the distance between profiles and the feature
vector representing the new service. Many other applica-
tions are provided in the literature [12, 20, 23, 13]. Most
of the concerned applications require an implementation of
RNN for high dimensions, since the data in such applications
(e.g., profiles, documents, etc.) are typically represented by
high dimensional vectors.

Although RNN is a complement of NN problem it is more
complex than NN problem even for two dimensional data.
The relationship between NN/RNN is not symmetric and
the number of RNNs are not known in advance. This can
be illustrated using a simple example. Consider four points
in a straight line a, b, c and d as shown below. The NN of a
is b, b is a, c is b and d is c. In this example, although d has
c as its NN it has no RNN (only possible candidate could
be c but it is more closer to b than d).

a b c d

The problems of multi-dimensional indexing [8, 16, 17, 9,
3, 15, 6, 22, 5] and NN query processing [18, 10, 19] have



been extensively studied in the literature. The proposed
technique in this paper can make use of any of the access
structures and nearest neighbor algorithms existing in the
literature. No additional data structures, or additional space
is needed. The first step of the proposed technique runs a
k-NN query on the data set and can employ available index
structures on the database. For large data sets, this step
may need to perform I/O operations. In the second step we
introduce a new kind of query Boolean Range Query (BRQ)
which tests whether there is any point in a given region.
Note that, the query is interested in neither the data objects
nor the total number of data objects in the range. Since the
query is restricted by nature, it can be implemented very
efficiently compared to range or aggregation queries, where
both the data objects or the total number of data objects
are of interest. For most cases, it does not require any I/O
operations, therefore takes negligible amount of time. Using
our framework, we can answer both NN and RNN queries
almost in the same time as running an NN query.

We implement the proposed approach based on a R-tree.
In contrast to current approaches, the proposed technique
does not require any additional preprocessing of the data
(such as precomputing and storing NN information for each
point), and is not limited to two-dimensions.

The rest of the paper is organized as follows. We first
discuss the previous work on RNN based queries in Section
2. Section 3 contains theoretical foundation for the RNN
search in high dimensions. Section 4 presents the proposed
algorithm. In Section 5, the results of the experiments are
given with the implementation of our algorithm. In Section
6, we formalize other variants of RNN such as bichromatic
RNN, RNN of order k, and matching query by giving mo-
tivating examples and showing how our framework can be
useful in those kind of queries. Section 7 offers a summary
and directions of future work.

2. DISCUSSION OF RELATED WORK
A brute force method for finding exact RNN is to first

find the nearest neighbor of each point and then determine
the points which have query point as the nearest neighbor.
However, this approach is not feasible when the number of
points in the database is large because its time complexity
is of the order n2.

The earlier approaches to find the RNN mostly deal with
two dimensions. The problem of RNN was first introduced
in [12] which used an R-tree based index structure to solve
the problem. In case of a static database the authors pro-
pose to use a special R-tree, called RNN-tree, to answer
RNN queries. For a dynamic database (where updates fre-
quently occur) two separate trees (NN-tree and RNN-tree)
are used. RNN-tree stores the nearest neighbor (NN) of each
data object and NN-tree stores a set of objects consisting of
the data points and their corresponding nearest neighbor.
RNN queries are then answered by point enclosure queries
over the RNN-tree. Briefly, for each point in the database
the corresponding NN is determined and a circle is gener-
ated with the point as the center and its distance to NN as
the radius. Then for a given query point q, all the circles
that contain q is determined to answer RNN query. This
approach is inefficient especially for dynamic databases be-
cause NN-tree and RNN-tree structures have to be modified
each time an update occurs either by insertion or deletion.
[23] improved the solution of [12] by introducing a single

indexing structure (Rdnn-tree) instead of multiple indices,
which makes it possible to answer both RNN and NN queries
using a single tree. Rdnn-tree (R-tree containing Distance of
Nearest Neighbors) differs from standard R-tree by storing
extra information about NNs of the points for each node,
therefore requires prior computation of NN for each point.
Recently [2] has proposed static and dynamic data struc-
tures for answering RNN queries in two dimensions.

[20] used a geometric approach to answer RNN queries
in two dimensions. RNN queries are answered by execut-
ing multiple conditional nearest neighbor queries. The al-
gorithm makes use of the fact that in two dimensions there
are at most six RNNs. The plane is divided into six equal
regions around the query point. If there are two RNN in
a region then they will be on the lines dividing the regions
otherwise each region would have at most one RNN. The
approach involves two steps. In the first step, NNs in each
of the regions are found and in the subsequent step each
point is checked for RNN.

The above mentioned approaches are for monochromatic
case, that is when all the points are of the same category. In
the bichromatic case there are two different kinds of points
in the database such as clients and servers. Given a server
q, RNN(q) retrieves all clients that are closer to q than to
any other server. Korn et.al. used the same approach but
the approach by [20] can not be applied here, because in this
case a point can have more than six RNN points. Employing
voronoi cells to answer the bichromatic case is proposed in
[21], and it is again restricted to only two dimensions.

3. CHALLENGES AND OBSERVATIONS FOR
HIGH DIMENSIONS

We first summarize some challenges in the high dimen-
sional RNN problem, and then state an important result
and some interesting observations which will allow us to de-
velop an efficient solution for the RNN problem even in high
dimensions. Let’s analyze the possible number of RNNs of a
point in a given dimensionality. This problem is analogous
to the sphere packing problem or the kissing number prob-
lem where one has to find the greatest number of equivalent
hyperspheres in n dimensions, all of same size, that can be
arranged around another hypersphere without any intersec-
tions [7]. In two dimensions the answer is six, i.e., six circles
around another circle. This property was used in [20] to
develop a two-dimensional RNN search algorithm. In three
dimensions this number becomes 12 and it increases expo-
nentially with increase in dimensionality. The exact values
of kissing number are known for n=1 to 9 and for n=24. Ex-
act kissing number in high dimensions is an open research
problem, however a range for the actual solution is given in
Figure 1. Lower bound denotes arrangements that can be
achieved and upper bound gives the theoretical upper bound
[7]. Also note that, in other distance metrics such as L∞,
the cardinality of RNN(q) is at most 3n −1 in n dimensions.

The exponential increase in the number of RNN with the
increase in dimensions makes the geometric algorithm in [20]
practically impossible for higher dimensions because number
of regions would be very high (equal to number of possible
RNN) and we have to search each region to find whether
a RNN exists or not. So, any similar approach would be
infeasible for high dimensions. The other two approaches in
the literature [12, 23] used prior NN distance information
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Figure 1: Kissing Number in High Dimensions

for each point to build the specific index structures. The
pruning power, based on the precomputed NN distance will
degrade significantly as the dimensionality increases because
of the typical high overlap problem. For example, the NN
circles (and the corresponding rectangular approximations)
used in [12] will highly overlap for high dimensions, and the
NN distance used for pruning in [23] will intersect most of
the other MBRs and cause them not to be pruned during
the RNN query.

Although the number of RNNs of a point in an n-dimensional
vector space exponentially depends on n, the expected num-
ber of RNNs in a data set is independent of dimensionality
based on the following observation. Consider a set S of
points in n-dimensional space and RNN queries q ∈ S to
the set S-{q}. For each point, take that point out and run
the RNN query on the remaining set. The number of RNNs
for q is the number of points which has q as NN by defini-
tion of RNN. If each node in the set has a unique NN then
number of RNNs for all queries is equal to the number of
points and the average is 1. If some points have 2 NNs,
then we add 2 for those points and divide the total number
of NNs by set size to find average number of RNNs. Al-
though this type of queries does not capture the worst case
performance, it takes into account several factors of the data
set. Queries depend on density of data, more queries are run
on dense regions. In most practical data sets the number of
NNs of a point will be quite low compared to the theoretical
maximum. Average number of RNNs being 1 has important
implications for high dimensional RNN queries in databases.
The average number is independent of the dimensions. This
suggests huge potential for improvement in high dimensions
using approximate schemes.

We experimentally verified the result using several real-life
data sets that are described in Section 5. Figure 2 shows the
plot of percentage of queries versus number of RNN. It is ev-
ident from the figure that in most cases the number of RNN
is usually small (0-4) although the number of RNN theoret-
ically increases exponentially with increase in dimension.

Another important observation for real high dimensional
data sets is that although NN and RNN are not symmet-
ric, they are strongly correlated. Efficient processing of NN
queries has been extensively studied in the past, and those
techniques can be employed for approximate searching of
RNNs, if there is really a correlation in practice between
the two. For this purpose, we performed experiments by ex-
ecuting k-NN queries to answer RNN queries approximately.
Figure 3 shows the variation of average recall with number of
NNs. Average recall is defined as the percentage of queries

0

10

20

30

40

50

60

0 2 4 6 8 10 12

%
 o

f q
ue

rie
s

Number of RNN

stock(360 dim)
isolet(617 dim)

landsat(60 dim)
histobig(64 dim)

Figure 2: Percentage of Queries versus Number of
RNN
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Figure 3: Plot showing average recall as a function
of Number of NNs

where RNN is contained in the k-nearest neighbor set. We
observe that with only finding a small number of NNs, i.e.,
with low values of k, we can achieve very high recall, e.g,
90% success with k = 10.

The two main observations mentioned in this section will
serve as motivation and foundation for the proposed scheme
which will be described next.

4. RNN ALGORITHM

remaining candidates to determine
actual RNN

Filtering step I

Filtering step II

     Final RNN

Effficiently eliminate some

query object q
query Parameter k

distance calculations
candidates by using local 

k

Run                                        on the Boolean Range Query

−NN query on the index structure 
)q(find candidates for RNNto

Figure 4: Proposed Algorithm for RNN

Figure 4 summarizes our general approach for answering
RNN queries. The algorithm proceeds in two steps: In the
first step, a k-NN search is performed returning the k closest
data objects to the query and in the next step these k objects



are efficiently analyzed to answer the query. The value of
k that should be used in the first step depends on the data
set and can be estimated by the experiments mentioned in
figure 3. Based on the values of average recall we can choose
the value of k we want to start with.

The following subsections explain the second step in detail
with necessary optimizations that can be used.

4.1 Filtering step I
After the first step of the RNN algorithm we have k-NN of

a query point. However, some of them can be ruled out from
further elaboration by local distance calculations performed
within the k objects, i.e., the candidate set. The principle of
the elimination is based on the fact that a point that does
not have the query point as the nearest neighbor among the
candidate set can never be the RNN of the query point in
the whole data set. Therefore a point that has another can-
didate as its closest in those kNN points is eliminated from
the search (note that only k objects are involved in this test).
We refer to this step as filtering step I. Our experiments show
that this step can efficiently filter out a significant number
of candidates. For example, for 60-NN queries on our stock
market time-series data, on the average 50% of the 60 candi-
dates are eliminated using only this filtering. In this step, we
can avoid some of the distance calculations (out of a pos-
sible

�
k

2 � ) by using an optimization based on comparison
of the already computed distances. This elimination makes
use of the fact that a multi-dimensional distance calculation
is typically more expensive than a single floating point dis-
tance value comparison. This is formalized by the following
lemma.

lemma 1. Let x and y be two nearest neighbors of the
query point q and d(x, y) denotes the distance between data
points x and y. If d(x, y) ≤ d(x, q) and d(x, q) ≤ d(y, q),
then it follows that both x and y cannot be RNN.

After filtering step I, we have a set of candidate data
points, each of which has a query point as its local NN (con-
sidering only the data points in the candidate set). For a
point to be a RNN, we need to verify that the query point
is the actual NN considering the whole data set. Two differ-
ent approaches can be followed here. One crude approach
to solve the above problem is to find the global NN of each
point and check whether it is the query point. If this is the
case, then that point is a RNN otherwise it is not an RNN.
Another approach, which we refer to as filtering step II is
running a new kind of query called the boolean range query,
which is covered in the following subsection.

4.2 Boolean Range Queries (Filtering step II)

Definition 1. A boolean range query BRQ(q, r) returns
true if the set {t ∈ S|d(q, t) < r} is not empty and returns
false otherwise.

Boolean range query is a special case of range query which
will return either true or false depending on whether there
is any point inside the given range or not. Boolean Range
Queries can be naturally handled more efficiently than range
queries and this advantage is exploited in the proposed schemes.
For each candidate point, we define a circular range with
the candidate point as the center and the distance to the
query point as the radius. If this boolean range query re-
turns false then the point is RNN, otherwise point is not

Procedure BooleanRangeQuery(Noden, pointq, radius)

BEGIN
Input:

Node n to start the search
Point q is query point
radius is equal to distance between
query point and candidate set point

Output:
True =⇒ At least one point inside search region
False =⇒ No point inside the search region

If n is a leaf node do:
check if there exists a point p such that
dist(p, q) ≤ q then return TRUE;

If n is an internal node, then for each branch do:
If any node(MBR) intersects such that at least
one edge of MBR is inside search region, i.e.,
minmaxdist ≤ radius then return TRUE;
else
Sort the intersecting MBRs wrt. some criterion
such as mindist and traverse the MBRs wrt. it.
If any of the MBRs has a point then return TRUE;
else return FALSE;

END

Figure 5: Boolean Range Query

CB

A

D E

Figure 6: Cases for boolean range query intersecting
with a region

a RNN. The range queries typically are more efficient than
NN queries [14], and boolean range queries are much more
efficient than range queries. Our explanation here will be
based on an R-tree based index structure, but the general
algorithm is not restricted to R-trees and it can be easily
applied to other indexing structures. The pseudocode for
Boolean Range Query is given in Figure 5.

Boolean Range Query versus Range Query
In a range query, typically multiple MBRs intersect the

query region. Especially when the number of dimensions is
high, the number of MBRs intersecting the query region is
also high. 1

For range queries we have to access all the MBRs that in-
tersect with the search region. The main strength of boolean
range query over traditional range query is that even multi-
ple MBRs intersect a search region we do not need to access
all of the MBRs.

Figure 6 shows five possible cases where a circular search
region can overlap partially or fully for range queries. Search
region is denoted by circle and MBRs are denoted by A, B,
C, D and E.

1However, it is beneficial to note that the number of MBRs
accessed in a high dimensional query is not as pessimistic as
the theoretical results suggest, mainly because of the corre-
lations of dimensions in real data. We will not discuss those
results in detail here, since it is an orthogonal issue to the
purpose of this paper.



1. MBR A: fully contained in search region. This means
that search region has at least one point.

2. MBR B: only one vertex of B is in search region.

3. MBR C: two of C’s vertices are in search region. This
means that an entire edge of MBR is in search region,
which guarantees that at least one data point is in
search region.

4. MBR D: no vertices of D are in search region.

5. MBR E: Search region is fully contained in the MBR
E.

For a boolean range query, if we can guarantee that at
least one edge of MBR is inside the search region then we
don’t need any page access (case A and C in Figure 6). This
can be easily checked by calculating the minmaxdist, which
is defined as minimum of the maximum possible distances
between a point (here candidate point or center of search
region) to the face of intersecting MBR [18]. If minmaxdist
is less than or equal to the radius of the search region than
there is at least a point in the intersecting MBR so we do
not need any page access. For example, we found that for
isolet data set, 35% of intersecting MBRs have this property.
For other cases B, D, and E we cannot say whether there
is a point contained both in search region and MBR. So,
traversal of the corresponding branch may be necessary to
answer the query if no relevant point is found previously.

When a range query intersects a number of MBRs, it has
to retrieve all of them and make sure that there is a data
point in them. The answer of the range query is all the
points that lie in the range. Even if the query asks only
the average of data objects in a given range, i.e. aggrega-
tion queries, it needs to read all the data points with in the
MBRs and check whether they lie within the given range.
However a boolean range query can be answered without
any page accesses as described above or with mimimal num-
ber of page accesses. If a single relevant point is found in
one of the MBRs, then we do not have to look for other
points and we can safely say that the corresponding point is
not an RNN. So, for the case of multiple MBRs intersecting
the query region, a decision has to be made to maximize
the chance of finding a point in the MBR so that the query
can be answered with minimal number of MBRs accesses.
In choosing the MBRs, there could be a number of possible
choices:

1. Sort MBRs wrt. overlap with search region and then
choose MBR with maximum overlap.

2. Sort MBRs wrt. mindist and then choose MBR with
minimum mindist.

3. Choose randomly.

We tried experimentally all the above three possibilities
and found that choice 1 and 2 are comparable and both are
better than choice 3. Most of the time the set of MBRs
that are retrieved to the memory in the first phase of the
algorithm is enough to guarantee that a point in a candidate
set is not an RNN. In this case, no additional I/O is needed
in the second phase. Therefore, almost with no additional
overhead on the k-NN algorithm we can simply answer RNN

queries. This result is justified by the experiments in Sec-
tion 5.

Multiple Boolean Range Queries
In the filtering step II we need to run multiple boolean

range queries since there are multiple points that remain af-
ter the filtering step I. Since these are candidates that are
very close to each other, multiple query optimization be-
comes very natural and effective in this framework. Multiple
queries are defined as the set of queries issued simultaneously
as opposed to single queries which are issued independently.
There have been a significant amount of research that inves-
tigated this approach for other kind of queries [4]. In our al-
gorithm, a boolean range query needs to be executed for each
point in the candidate set. Since the radius of the queries
are expected to be very close to each other (because they
are all in the k-NN of the query), executing multiple queries
simultaneously reduces the I/O cost significantly. First we
read a single page for the whole set of queries. The criteria
for deciding which page to access first is to retrieve the page
that has the most number of intersections with the queries.
The performance gain of this approach is discussed next.

5. EXPERIMENTAL RESULTS
We carried out experiments using several real data sets to

explore the RNN problem in high dimensions. We also com-
pared the performance of boolean range query with range
query, and also examined the performance of multiple boolean
range queries. For performance comparisons we used SVD
reduced data sets and chose 500 query points at random
from it.

The data sets used in our experiments are real data sets
from different application domains (please contact author
for the data sets). We used the following data sets:

• Stock Time series, is a time series data set which con-
tains 360 days (dimensions) stock price movement of
6500 companies (8.93 MB).

• Isolet (Isolated letter speech recognition) data consists
of speech samples of 26 English alphabets with 617
dimensions and 7797 samples (18.35 MB).

• Satellite Image Texture (Landsat), is of size 21,000
with 60-dimensional vectors representing texture fea-
tures of Landsat images (4.85 MB).

• Color Histogram, is a 64 dimensional data set of size
12,000. The vectors represent color histogram com-
puted from a commercial CD-ROM (2.94 MB).

The code for our experiments was implemented in C++ on
a Solaris UNIX workstation. We modified the R-tree code
provided by GIST [1] for performance comparisons. The
page size was set to 8K.

5.1 Dimensionality Reduction for RNN
When the dimensionality of data is high, transformation

functions such as SVD [11] is generally used to reduce the
dimensionality. Depending on the chosen number of dimen-
sions we took only those columns from the SVD matrix.
SVD is widely and successfully used for traditional range
and NN queries. We performed experiments to investigate
the effectiveness of transformation functions such as SVD for
RNN problem. Figure 7 shows the comparison of the vari-
ous data sets for different percentage of dimensions. These
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Table 1: Comparison of Boolean Range Query with
Range Query
Dim. 5 10 15

RQ BRQ RQ BRQ RQ BRQ
Landsat 60.57 27.18 188.29 19.15 299.87 9.45
Histo 7.56 3.94 38.21 8.55 91.8 13.28
Stock 46.18 20.55 91.63 17.43 125.22 14.20
Isolet 88.86 36.49 160.96 3.11 225.79 1.07

results show that SVD is effective to reduce the dimension-
ality also in the domain of RNN queries. For example, using
only 7% of the SVD dimensions an average recall of 90% is
achieved for stock price time-series data.

5.2 Boolean Range Query and Multiple Query
Optimization

In this section we compare the performance of range query
vs. boolean range query, a single boolean range query vs.
multiple boolean range query. We calculated the average
I/O cost, i.e., the number of page accesses divided by the
number of queries.

Table 1 shows the I/O performance of the boolean range
query compared to range query. There is a significant im-
provement in the performance. Here we only show results on
range query and boolean range query corresponding to the
region for the first nearest neighbor only. When we perform
the same experiments for more neighbors, the difference in
page accesses of the two is very high, mainly because as the
search region increases range query retrieves more pages.

Table 2 shows the I/O performance of multiple boolean
range queries compared to single boolean range queries. The
values here refer to the total number of page accesses for 60
boolean range queries. Since all the queries are close to each
other there is a high overlap between query regions, and all
queries access almost same set of pages. We observed a
speedup of 7 to 60 over the single query case.

5.3 Overall performance of proposed technique
In our RNN search we find RNN in two phases. In the

first phase we find k-NN of a query point and in the second
phase we run boolean range query on reduced set. Most of
the time both phases use same pages. Therefore, if we use
the pages that are retrieved in the first phase for the sec-
ond phase there will be a significant improvement in perfor-
mance. So we ran experiments to measure the costs for NN
queries, multiple boolean range queries, and the combined

Table 2: Comparison of Single vs Multiple Boolean
Range queries
Dim. 5 10 15

Single Mult Single Mult Single Mult
Landsat 351.8 44.15 158.12 27.03 111.21 14.53
Histo 98.26 9.23 148.56 17.39 186.38 24.14
Stock 179.64 25.87 207.4 22.11 178.26 21.08
Isolet 300.83 16.19 64.68 5.84 60.55 1.17

NN-BRQ. Table 3 shows the corresponding results. From
the table and figure, it is evident that the cost of combined
queries is essentially the same as that of NN query and is
small compared to separate NN and BRQ. This shows that
the proposed approach can effectively and efficiently answer
RNN query in the running time of NN queries.

Analysis of each step
The time complexity of our algorithm is comprised of

three factors: 1) Time to calculate k-NN for a given query
point. 2) Time taken for filtering step I. 3) Time to run
boolean range queries (filtering step II).

To analyze the effect of each step, we looked at three
possible scenarios of answering RNN queries.

1. k-NN + multiple NN for k (no filtering is used here
and we are running NN queries on k points)

2. k-NN + multiple NN with filter I (here we are reducing
the number of multiple NN queries from k to m by
using filtering I)

3. k-NN + filter 1 + filter 2 (the overall algorithm)

In each of the above cases first step is same, i.e., finding
a k-NN. Therefore all scenarios mentioned above are taking
advantage of the fact that most of the time the pages that
are retrieved in the first step are used in the second step. We
ran our experiments on SVD reduced data sets with different
dimensions but because of the lack of space we are showing
the results for landsat and isolet data with 10 dimensions
only.

Figure 8 shows the average I/O and time for landsat data.
Note here that timing results are real and shows the time
taken for executing a single RNN query. However, average
I/O takes advantage of the fact that the points that are
retrieved in the first step, i.e., k-NN search does not need
to be accessed again. For comparison purposes on a landsat
data, for a single query, the number of page accesses needed
by brute force method is 3868986 and the time taken is 256
secs. Lower bar in each of these bar charts correspond to first
step i.e. running a k-NN query. The number of page accesses
and the time required by the overall algorithm is minimum
of all the considered choices. Moreover, the number of I/O’s
required is almost same as required by k-NN query, so we
can effectively and efficiently answer RNN query by running
only k-NN query. The time taken and the number of page
accesses will definitely depend on the number of data points
and both will increase as the size of the data increases.

6. VARIANTS OF RNN
In this section, we extend the proposed approach to other

variants of RNN such as bichromatic RNN and RNN of order



Table 3: Performance of combined NN and Boolean range queries
Dim. 5 10 15

NN Combined Separate NN Combined Separate NN Combined Separate
Landsat 107.91 111.49 148.72 257.71 259.1 284.74 377.23 378.29 391.76
Histo 20.47 23.44 29.70 78.28 79.37 95.66 161.36 162.57 185.49
Stock 58.58 58.84 84.46 102.6 102.86 124.72 137.18 137.44 159.3
Isolet 102.69 102.69 146.84 171.24 171.29 177.1 228.57 228.57 229.74
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Figure 8: Average I/O and time for landsat data

k. Our approach can be used to answer these with slight
modifications.

Bichromatic RNN: As mentioned in the section 2 for
bichromatic case we have two sets of points, say client and
server. RNN query for a server s asks to find all the client
points that have s as the closest. The average number of
RNN here is the ratio of number of clients/servers. Our
algorithm can be used to answer the bichromatic case as
follows.

1. Build two index structures (e.g. R-trees), one for client
and one for server.

2. Run k-NN query on the client assuming server as the
query point.

3. Run BRQ on those k points (candidate points) by tak-
ing radius as the distance between query point and
candidate point.

4. If BRQ returns TRUE than the candidate point is not
a RNN otherwise it is a RNN.

RNN of order k: RNN of order k asks all points whose
one of the k nearest neighbors is the query point. RNN
problem is a special case of RNN of order k where k = 1.
For example, we may want to inform the customers affected

by the opening of a new store location. Instead of inform-
ing the customers that are closest to this new store we can
inform the customers who have this store as one of their
k closest. Our experiments with real data sets have shown
that the traditional RNN problem returns a zero result in
a significant number of queries (around 30% − 40%). This
percentage drops down to 5%−10% for RNN of order 5. For
some applications it may be more useful to keep the query
general, i.e., being second (or kth) closest to a data point is
usually equally interesting to the user, especially given the
approximate nature of the applications. We define count
range queries which can be used to answer RNN of order k.
Instead of running BRQ in the last step we will run count
range queries. Count range query for RNN of order k checks
whether the corresponding range query has k points inside
it or not. Boolean range query is a count range query with
count equals 1. We can answer RNN of order k by running
count range query instead of boolean range query in the last
step of RNN algorithm.

Matching Query: A matching query asks all points in
the i neighborhood (i.e., in the top i NNs) of the query
which have the query point in their j neighborhood. It has
many applications of its own, i.e., applications that involve
the matching of the data such as profiles. For example, let’s
consider a job hunting website. An NN query can be posed,
asking the top k companies that fit to a given user’s quali-
fications. Or inversely, an RNN query can be posed to find
the companies whose top choice is the given user (which
may return an empty set as the query result). However, a
matching query would be more appropriate in this scenario,
since both the company and the user must be mutually in-
terested in each other. Similarly in a stock market database,
a useful query is to ask companies that have similar stock
price movements to each other, i.e., that are affected by
each other. A big company will clearly affect the stocks
of many other small ones, therefore an RNN query alone
won’t be that useful. Similarly an NN query by itself may
not be very interesting either since a small company will
easily be affected by the big ones. In order to capture the
movements that are mutually correlated (such as two small
companies doing business together), a matching query is a
natural choice. The proposed technique naturally answers a
matching query almost in the same time as a k-NN query.

7. CONCLUSIONS AND FUTURE WORK
The problem of finding RNN in high dimensions has not

been explored in the past. We discussed the challenges and
elaborate some important observations related to high di-
mensional RNNs. Then we proposed an approximate so-
lution to answer RNN queries in high dimensions. Our ap-
proach is based on the strong correlation in practice between
k-NN and RNN. The algorithm works in two phases. In the
first phase the k-NN of a query point is found and in the next



phase they are further analyzed using Boolean range queries
(BRQ). Experiments on several real data sets showed that
BRQ is much more efficient than range query, and can be
effectively used to answer RNN queries. Performance is fur-
ther improved by running multiple BRQ simultaneously. We
also define other variants of RNN such as bichromatic RNN,
RNN of order k and matching queries, which have many ap-
plications in the real world and showed that our algorithmic
approach is also adaptable to these kind of queries.

Our approach is easily adaptable to any access structure
without any changes on the current implementation. In this
paper, we discussed effective way of implementing our al-
gorithm on R-tree. For dynamic data sets, no additional
operation has to be performed except the routine insertion
and deletion algorithms for the underlying index structure
that has to take place anyway. Although we have studied
the RNN problem for monochromatic case in detail, exten-
sion of our approach to bichromatic and RNN of order k
is straightforward. As a future work, we plan to further
explore the RNN and variants of RNN on top of cluster-
ing based scheme and perform more extensive performance
evaluation of our techniques using various architectures.
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